

Bioequivalence trials designed using adaptive methodologies

Timothy H Montague

November 06, 2006

BASS XIII

* Acknowledgements to John Whitehead, University of Reading

- To share an exact method for design and evaluation of two stage sequential designs for bioequivalence hypothesis
- To discuss how this method compares to existing designs

Outline

- Introduction to Bioequivalence Trials
- Motivation
- Two-Stage Sequential Design
- Exact Methods
- Comparisons to Current Methodologies
- Other Work
- Summary

- Clinical study to compare a new formulation and current formulation of drug product
- Objective is to demonstrate *bioequivalence (BE)* of pharmacokinetic (PK) profile
 - $-\,\mathrm{PK}$ drug concentration in the blood
 - $-\operatorname{surrogate}$ for efficacy and safety
 - $-\operatorname{PK}$ measures: AUC and Cmax
- Conducted to gain market access for new formulation

- Study Design: A randomized, open-label, period-balanced, two period crossover design. Formulatoins: C: current and T: test
- Model: $y_{ijk} = \mu + \pi_j + \tau_{\mathbf{d}[\mathbf{i},\mathbf{j}]} + s_{ik} + \mathbf{e_{ijk}}$

for the k^{th} subject in the j^{th} period of the i^{th} sequence

between-subject: $s_{ik} \sim N(0, \sigma_b^2)$ within-subject: $e_{ijk} \sim N(0, \sigma_e^2)$ - sequence 1 be CT, sequence 2 be TC: $d[1,1] = d[2,2] \Rightarrow$ regimen C $d[1,2] = d[2,1] \Rightarrow$ regimen T

- Treatment Difference: $\tau_d = \tau_T \tau_C$
- estimated by: $\hat{\tau}_d = \frac{1}{2}(\bar{y}_{12.} \bar{y}_{11.} + \bar{y}_{21.} \bar{y}_{22.}) \sim N(\tau_d, 2\sigma_e^2/N)$
- Within-subject variance: σ_e^2 estimated by: $s^2 = \sum_{i=1}^2 \sum_{k=1}^{N/2} ((d_{ik} - \bar{d}_{i.})^2 / (N - 2))$

where

$$\bar{y}_{ij.} = \sum_{k=1}^{N/2} y_{ijk} / (N/2)$$
$$d_{ik} = y_{i2k} - y_{i1k}$$
$$\bar{d}_{i.} = \sum_{k=1}^{N/2} d_{ik} / (N/2)$$

The null hypothesis of "Not bioequivalent" is expressed as:

$$H_0^-: \tau_d \le L \quad \text{or} \quad H_0^+: \tau_d \ge U$$

The alternative hypothesis of "Bioequivalent" is expressed as:

$$H_a^-: \tau_d > L \quad \text{and} \quad H_a^+: \tau_d < U$$

L and U define the bioequivalence criteria. For this talk, it L = -U (symmetric BE criteria).

• Type I error probabilities:

$$\begin{aligned} \alpha^- &= \operatorname{Prob}[\operatorname{Claim}\,\operatorname{BE}|\ \tau_d = \mathrm{L}] \\ \alpha^+ &= \operatorname{Prob}[\operatorname{Claim}\,\operatorname{BE}|\ \tau_d = \mathrm{U}] \\ \alpha &= \alpha^- = \alpha^+, \, \mathrm{when} \, \, L = -U \end{aligned}$$

• Type II error probabilities:

$$\beta = 1 - \text{Prob}[\text{Claim BE}|\tau_d = 0]$$

Claim BE when both H_0^- and H_0^+ are rejected. Or when the $100(1 - 2\alpha)\%$ confidence intervals $\in (U, L)$

Claiming BE

• Sample size:

$$N_0 = \frac{2 \left(\Phi^{-1}(1-\alpha) + \Phi^{-1}(1-\beta/2)\right)^2 \sigma_0^2}{(U-|\tau_{\mathbf{d0}}|)^2}$$

- Under estimates of the within-subject variance (e.g.; $\sigma_0^2 < \sigma_e^2$) can result in an **inconclusive** study
 - delay market access for drug product and/or formulation
- Adaptive designs can help mitigate any uncertainty
 - Sample size re-estimation
 - Group sequential designs
 - Group sequential design with sample size re-estimation

- Two-stage group sequential design with **interim** look after n_1 subjects complete and **final** look after N (= $n_1 + n_2$) subjects complete
- At interim: 3 potential decisions (i) stop and claim BE, (ii) stop and do not claim BE and (iii) continue trial.
 - Defined by rejection region criteria
 - * in terms of difference in formulations, $\hat{\tau}_d$
 - * in terms of test statistics, t^- and t^+

Two-stage sequential design defined in terms of difference in formulations, τ_d

Sample Size

• At interim look will calculate (based on n_1 subjects)

$$t_1^- = \frac{\hat{\tau}_{d1} - L}{s_1 \sqrt{2/n_1}}$$
 and $t_1^+ = \frac{U - \hat{\tau}_{d1}}{s_1 \sqrt{2/n_1}}$

- mean difference in treatments, $\hat{\tau}_{d1}$
- estimated within-subject variance, s_1^2
- test statistics, t_1^- and t_1^+

* follow a Student's T distribution, if $\tau_d = L$ or U, respectively

• At final look will calculate (based on $n_1 + n_2$ subjects)

$$t^- = \frac{\hat{\tau}_d - L}{s\sqrt{2/N}}$$
 and $t^+ = \frac{U - \hat{\tau}_d}{s\sqrt{2/N}}$

- mean difference in treatments, $\hat{\tau}_d$
- estimated within-subject variance, s^2
- test statistics, t^- and t^+
 - * **do not** follow a Student's T distribution, only calculate if study "continues" following interim analysis
 - $*t^{-}$ and t^{+} are dependent on t_{1}^{-} and t_{1}^{+} ,

Two-stage sequential design defined in terms of test statistics, t^- and t^+

Note: Both t^- and t^+ must be in blue area to Claim BE. And either t^- and t^+ can be in the red to not claim BE.

• $\hat{\tau}_d$ is dependent on $\hat{\tau}_{d1}$ $(n_1/N)\hat{\tau}_{d1} + (n_2/N)\hat{\tau}_{d2} = \hat{\tau}_d$

• s^2 is dependent on s_1^2 $s^2 = \frac{(n_1 - 2)s_1^2 + (n_2 - 2)s_2^2 + SS}{n_1 + n_2 - 2}$

where $SS = \frac{n_1 n_2}{2N} [(\vec{d}_{1.}^{(1)} - \vec{d}_{1.}^{(2)})^2 + (\vec{d}_{2.}^{(1)} - \vec{d}_{2.}^{(2)})^2],$

where $d_i^{(1)}$ and $d_i^{(2)}$ are the average difference in formulations for the ith sequence based on n_1 and n_2 subjects, respectively.

Type I and II Error Probabilities and Futility Probabilities for Two-Stage Sequential Design

Decision	$\tau_d = L$	$\tau_d = U$	$\tau_d = 0$	
Claim BE at interim *	α_1^-	α_1^+	ρ_1	
Claim BE at end **	α_2^-	α_2^+	$ ho_2$	
Claim BE	$\alpha^- = \alpha_1^- + \alpha_2^-$	$\alpha^+ = \alpha_1^+ + \alpha_2^+$	$\rho = \rho_1 + \rho_2$	
Do not claim BE	α_0^-	α_0^+		
at interim *				

* study is also stopped at this point

** implies study continued following interim look

- All probabilities can be evaluated using the density functions of test statistics, t_1^- , t_1^+ , t^- and t^+ .
- Which are functions of the independent statistics, $\hat{\tau}_{d1}$, $\hat{\tau}_{d}$, s_1^2 , s_2^2 and the $d_i^{(j)}$'s

Density of t_1^-

- $\hat{\tau}_{d1} \sim N(\tau_d, \ 2\sigma_e^2/n_1)$
- Let $w_1 = (n_1 2)s_1^2 / \sigma_e^2 \sim \chi_{n_1 2}^2$
- Then $z_1^- = t_1^- \sqrt{w_1/(n_1 2)}$, which is distributed normally
- The density of t₁⁻ can be expressed as the joint density of z₁⁻ and w₁:
 product of normal and a chi-square density function

Density of t^-

- Let $w = (N-2)s^2/\sigma_e^2 = w_1 + w_2^* \sim \chi_{N-2}^2$
- $w_2^* = (n_2)(s_2^*)^2 / \sigma_e^2 \sim \chi_{n_2}^2$ - $(s_2^*)^2 = (n_2 - 2)s_2^2 + SS$
- Let $z_2^- = t^- \sqrt{(w_1 + w_2^*)/(N-2)} \sqrt{N/n_1} z_1^-$, which is distributed normally
 - which is a function of $\hat{\tau}_{d2}$ and $(s_2^*)^2$
- The density of t^- can be expressed as the joint density of z_1^- , w_1 , z_2^- and w_2^* :
 - $-\operatorname{product}$ of 2 normal and 2 chi-square density functions
 - an improper density

Let,

$$\pi_1(\Delta) = Prob[\text{Claim BE at interim } | \tau_d = \Delta]$$

 $\pi_2(\Delta) = Prob[\text{Continue at interim and Claim BE at end } | \tau_d = \Delta]$
The probabilities can be defined in terms of π_1 and π_2 as follows:

$$\alpha^{-} = \alpha_{1}^{-} + \alpha_{2}^{-} = \pi_{1}(L) + \pi_{2}(L)$$
$$\alpha^{+} = \alpha_{1}^{+} + \alpha_{2}^{+} = \pi_{1}(U) + \pi_{2}(U)$$
$$\beta = 1 - \rho = 1 - \rho_{1} - \rho_{2} = 1 - \pi_{1}(0) - \pi_{2}(0)$$

 $\pi_1(\Delta)$ and $\pi_2(\Delta)$ can be evaluated by integrating over the densities t_1^- and t^- , respectively.

The futility probabilities, α_0^- and α_0^+ , will be defined later in the talk.

Defining integration limits

$$dd_{1} = 2U/(s_{1}\sqrt{2/n_{1}}) - uu_{1}$$
$$cc_{1} = 2U/(s_{1}\sqrt{2/n_{1}}) - ll_{1}$$
$$dd_{2} = 2U/(s\sqrt{2/N}) - uu_{2}$$

Defining integration limits (continued)

Decision	only t^-
Claim BE at interim	$t_1^- \in (uu_1, dd_1)$
Do not Claim BE at interim	$t_1^- < l t_1 \text{ or } t_1^- > c c_1$
Continue	$t_1^- \in (ll_1, uu_1)$ or
	$t_1^- \in (dd_1, cc_1)$
Claim BE at end	$t^- \in (uu_2, dd_2)$
Do not Claim BE at	$t^- \leq uu_2 \text{ or } t^- cc_2$

Note: uu_1 is less than dd_1 when $w_1 < \theta^2 (n_1/2)(n_1 - 2)/uu_1^2$.

And uu_2 is less than dd_2 when w_2^* is less than $\theta^2(N/2)(N_1-2)/uu_2^2$.

$$\begin{aligned} \pi_1(\Delta) &= \int_0^{bb_1} \int_{d_1}^{cc_1} \phi(y_1^-) \psi_{n_1-2}(w_1) \ dy_1^- dw_1 \\ \pi_2(\Delta) &= \\ &\int_0^{bb_1} \int_{c_1}^{d_1} \int_0^{bb_2} \int_{c_2}^{d_2} \phi(y_1^-) \psi_{n_1-2}(w_1) \phi(y_2^-) \psi_{n_2}(w_2^*) \ dy_2^- dw_2^* dy_1^- dw_1 \\ &+ \int_0^{bb_1} \int_{cc_1}^{dd_1} \int_0^{bb_2} \int_{c_2}^{d_2} \phi(y_1^-) \psi_{n_1-2}(w_1) \phi(y_2^-) \psi_{n_2}(w_2^*) \ dy_2^- dw_2^* dy_1^- dw_1 \\ &+ \int_{bb_1}^{\infty} \int_{c_1}^{dd_1} \int_0^{bb_2} \int_{c_2}^{d_2} \phi(y_1^-) \psi_{n_1-2}(w_1) \phi(y_2^-) \psi_{n_2}(w_2^*) \ dy_2^- dw_2^* dy_1^- dw_1. \end{aligned}$$

$$bb_{1} = \theta^{2}(n_{1}/2)(n_{1}-2)/uu_{1}^{2}$$

$$c_{1} = ll_{1}\sqrt{w_{1}/(n_{1}-2)} - (\Delta - L)/(\sigma_{e}\sqrt{2/n_{1}}) \qquad \Delta/\sigma_{e} = (\Delta/\sigma_{0})(\sigma_{0}/\sigma_{e})$$

$$d_{1} = uu_{1}\sqrt{w_{1}/(n_{1}-2)} - (\Delta - L)/(\sigma_{e}\sqrt{2/n_{1}})$$

$$cc_{1} = \frac{2U}{\sigma_{e}\sqrt{2/n_{1}}} - uu_{1}\sqrt{w_{1}/(n_{1}-2)} - (\Delta - L)/(\sigma_{e}\sqrt{2/n_{1}})$$

$$dd_{1} = \frac{2U}{\sigma_{e}\sqrt{2/n_{1}}} - ll_{1}\sqrt{w_{1}/(n_{1}-2)} - (\Delta - L)/(\sigma_{e}\sqrt{2/n_{1}})$$

$$bb_{2} = \theta^{2}(N/2)(N_{1}-2)/uu_{2}^{2}$$

$$c_{2} = \frac{uu_{2}\sqrt{(w_{1}+w_{2}^{*})/(N-2)} - y_{1}^{-}\sqrt{n_{1}/N} - (\Delta - L)/(\sigma_{e}\sqrt{2/N})}{\sqrt{n_{2}/N}}$$

$$d_2 = \frac{2U/(\sigma_e\sqrt{2/N}) - uu_2\sqrt{(w_1 + w_2^*)/(N-2)} - y_1^-\sqrt{n_1/N} - (\Delta - L)/(\sigma_e\sqrt{2/N})}{\sqrt{n_2/N}}$$

The futility probability is the probability of do not claim BE at the interim, which occurs when $t_1^- < ll_1$ and $t_1^- \ge 2U/(s_1\sqrt{2/n_2}) - ll_1$.

 $\alpha_0^- = Prob[\text{Do not claim BE at interim } | \tau_d = L]$

$$= 1 - \int_0^\infty \int_{c_1}^\infty \phi(y_1^-)\psi_{n_1-2}(w_1) \, dy_1^- dw_1 + \int_0^\infty \int_{dd_1}^\infty \phi(y_1^-)\psi_{n_1-2}(w_1) \, dy_1^- dw_1$$

where c1 and dd1 are defined above, with $\Delta = L$.

- Set α and β
- Provide σ_0^2 and τ_{d0}
- \bullet Set equivalence criteria, L and U
- Further constraints are needed
 - When interim look will occur, defined in terms of ratio of n_1/N
 - How much of α to be spend at the interim look, α_1
 - Futility criteria, defined in terms of α_0 .
- Using $\pi_1(\Delta)$ and $\pi_2(\Delta)$ can solve for rejection region parameters, ll_1 , uu_1 and uu_2 for any choice of constraints

Let

- $\alpha = 0.05$ and $\beta = 0.10$
- σ_0 be values such that $\theta_0 = (U/\sigma_0) = 0.2628, 0.5343$ and 0.9254
- $\tau_d = 0, \ U = -L = 0.2231, \ n_1/N = 0.5$
- $\alpha_1 = 0.008821$ and $\alpha_0 = 0$ (No stopping for futility)

θ_0	N(R)	n_1	ll_1	uu_1	uu_2
0.2628	321.39 (1.03)	160.69	-4.3964	2.1963	1.6960
0.5343	78.99(1.04)	39.50	-4.8579	2.2876	1.7108
0.9254	27.44(1.09)	13.72	-6.5718	2.5918	1.7547

NOTE: R is the ratio of maximum sample size for the sequential design and the sample size for a fixed design.

More example Designs

Now consider the following changes:

- $n_1/N = 0.75$ (design 2)
- $\alpha_1 = 0.0303964 \; (\text{design } 3)$
- $\alpha_0 = 0.25$ (design 4)
- all three changes (design 5)

For $\theta_0 = 0.9254$, new designs are:

Design	θ_0	N (R)	n_1	ll_1	uu_1	uu_2
1	0.9254	27.44(1.09)	13.72	-6.5718	2.5918	1.7547
2	0.9254	27.19 (1.08)	20.39	-5.6327	2.5816	1.7150
3	0.9254	30.19 (1.19)	15.09	-6.3268	2.0247	1.9678
4	0.9254	27.44(1.09)	13.72	-0.6949	2.5918	1.7525
5	0.9254	28.23(1.12)	21.17	-0.6885	1.9911	1.8404

Summary of Exact Methods

- the Exact Method is specific to:
 - bioequivalence hypothesis
 - $-\operatorname{two}$ stage sequential design
- the exact Method provides:
 - exact Type I and II error probabilities
 - $-\operatorname{means}$ to evaluate any 2 stage sequential design
- Is generalizable to
 - $-\operatorname{more}$ than one interim look
 - * computationally exhaustive
 - superiority hypotheses

Question: What methods for designing a two stage sequential design for BE already exist?

- Many designs in the literature
 - All are based on similar principles (dependence of the later looks on earlier looks)
- Differences
 - Assume variance is known
 - Hypothesis is one or two sided superiority $(H_0 : \tau_d = 0)$
- There are approximations to account for these.
- Another alternative: Combining p-values of adaptive designs

Question: How do these compare to the exact method?

Approximations from Jennison and Turnbull[2]:

• Assumption of known variance

- Transformation of rejection region parameters $(l_1, u_1 \text{ and } u_2)$ using the quantiles of the t-distribution $(t_{\nu,p})$:

 $-ll_1 = t_{n_1-2,1-\Phi(l_1)}, \quad uu_1 = t_{n_1-2,1-\Phi(u_1)} \text{ and } uu_2 = t_{N-2,1-\Phi(u_2)}$

- Bioequivalence: design as a superiority trial
 - Equate: Claim different (superiority) to Do not claim BE and viceversa
 - $\alpha:$ is desired Type II probability of the bioequivalence trial
 - $\beta:$ is desired Type I probability of the bioequivalence trial
 - Transformation of the rejection region parameters, $(b_1, a_1 \text{ and } b_2)$

$$\begin{split} l_1 &= -b_1 + U/(\sigma_e \sqrt{2/n_1}) \quad u_1 = -a_1 + U/(\sigma_e \sqrt{2/n_1}) \\ u_2 &= -b_2 + U/(\sigma_e \sqrt{2/N}) \end{split}$$

- Proposed in the context of adaptive designs
- Based on: Independence of cohorts and thus, their corresponding p-values
- p-values ~ U[0,1], with z-score $(z_i = \Phi^{-1}(1-p_i))$ are ~ N[0,1](under null hypothesis)
- The combination of the p-values, $C(p_1, p_2)$ is also N[0, 1]: $C(p_1, p_2) = 1 - \Phi[w_1 \Phi^{-1}(1-p_1) + w_2 \Phi^{-1}(1-p_2)].$
- Compare p_1 verse α_1 and α_0 and $C(p_1, p_2)$ verse c
- For BE, p-values for both Hypotheses $(H_0^- \text{ and } H_0^+)$ are needed
- Power and sample sizes are approximate
 - -z-scores are not distribute N[0, 1] under the alternative.

- Under the assumption of variance known, $n_1 = n_2$ and $w_i = \sqrt{(n_i/N)}$, all three designs are identical
- However, they differ under assumption of the variance being unknown
- For combination p-value designs:
 - + error probabilities are exact under the null
 - not all the information is used if trial continues to the end
- For approximations
 - + uses all the information
 - the dependence of between looks is partially ignored
- The exact method has both advantages!!

Question: How do they compare in terms of controlling α and β ?

Parameter	Exact Design	Approx. $Design^*$	p-value Design**
N	27.44	26	25.78
n_1	13.72	14	12.89
$ll_1 \text{ or } a_0$	-6.5718	-6.7663	1.0
$uu_1 \text{ or } a_1$	2.5918	2.4722	0.00882
$uu_2 ext{ or } c$	1.7547	1.7625	0.04536

* Sample sizes rounded to nearest even integer, prior to transformation of rejection region. Superiority design generated using exact methods ** Rejection region parameters defined in terms of p-values $(a_0, a_1 \text{ and } c)$

* Exact methods used to calculate probability
** Monte Carlo/Importance sampling (1000 reps) used to calculate probability

* Exact methods used to calculate probability
** Monte Carlo/Importance sampling (1000 reps) used to calculate probability

- Sample size re-estimation
 - $-\operatorname{Similar}$ methods can be used
 - Summation of integrals, each one corresponding to re-estimated value of n_2
- Two stage sequential designs with sample size re-estimation
 Fixed Sequential Design only re-estimate n₂
 Partially fixed sequential design re-estimate n₂ and uu₂
 Fully flexible sequential design re-estimate n₂, uu₁, ll₁ and uu₂

- The exact Method provides:
 - $-\operatorname{ability}$ to design trials with exact Type I and II error probabilities
 - great flexibility in design constraints
 - $-\,\mathrm{a}$ means to evaluate the properties of any 2 stage sequential design
- Is superior to other designs which either do not provide exact probabilities or do not utilize all information gathered in the trial
- The exact method is generalizable to
 - other hypotheses (e.g.; superiority)
 - $-\operatorname{more}$ than one interim look
 - * although computationally exhaustive

References

- [1] Kiesar, M. and Friede, T. (2000) Re-calculating the sample size in internal pilot study designs with control of the type I error rate. *Statistics in Medicine*. **19**: 901–911
- [2] Jennison, C. and Turnbull, B.W. (2000) Group Sequential Methods with Application to Clinical Trials. Chapman and Hall CRC.
- [3] Bauer, P. and Köhne K. (1994) Evaluation of Experiments with Adaptive Interim Analyses. Biometrics 50:1029–1041
- [4] Bauer, P., Brannath, W. and Posch, M. (2001) Flexible two-stage designs. Methods of Information in Medicine 40: 117–121
- [5] Brannath, W., Posch, M. and Bauer, P. (2002) Recursive Combination Tests. Journal of the American Statistical Association. 97: 236–244
- [6] Posch, M., Bauer, P. and Brannath, W. (2003) Issues in Designing Flexible Trials. Statistics in Medicine 22: 953–969
- [7] Lehmacher W. and Wassmer, G. (1999) Adaptive Sample Size Calculations in Group Sequential Trials. *Biometrics* 55 :1286–1290
- [8] Wassmer, G., Eisebitt, R. and Coburger, S. (2001) Flexible interim analyses of clinical trials using multistage adaptive test designs. *Drug Information Journal* 35: 1131–1146
- [9] Siegmund, D. (1975) Importance Sampling in the Monte Carlo Study of Sequential Tests. The Annuls of Statistics 4: 673–684

[10] Fishman, G.A. (1996) Monte Carlo: Concepts, Algorithms and Applications. Springer[11] Rubinstein, R.Y. (1981) Simulations and the Monte Carlo Method. Wiley and Sons