Bioequivalence trials designed using adaptive methodologies

Timothy H Montague

November 06, 2006
BASS XIII

* Acknowledgements to John Whitehead, University of Reading

Objective

- To share an exact method for design and evaluation of two stage sequential designs for bioequivalence hypothesis
- To discuss how this method compares to existing designs

Outline

- Introduction to Bioequivalence Trials
- Motivation
- Two-Stage Sequential Design
- Exact Methods
- Comparisons to Current Methodologies
- Other Work
- Summary

Bioequivalence trials

- Clinical study to compare a new formulation and current formulation of drug product
- Objective is to demonstrate bioequivalence (BE) of pharmacokinetic (PK) profile
- PK - drug concentration in the blood
- surrogate for efficacy and safety
- PK measures: AUC and Cmax
- Conducted to gain market access for new formulation

Figure of PK profile and measures

Crossover Designs and Model

- Study Design: A randomized, open-label, period-balanced, two period crossover design. Formulatoins: \mathbf{C} : current and \mathbf{T} : test
- Model: $y_{i j k}=\mu+\pi_{j}+\tau_{\mathbf{d}[\mathbf{i}, \mathbf{j}]}+s_{i k}+\mathbf{e}_{\mathbf{i j k}}$
for the $\mathrm{k}^{\text {th }}$ subject in the $\mathrm{j}^{\text {th }}$ period of the $\mathrm{i}^{\text {th }}$ sequence
between-subject: $s_{i k} \sim N\left(0, \sigma_{b}^{2}\right)$
within-subject: $e_{i j k} \sim N\left(0, \sigma_{e}^{2}\right)$
- sequence 1 be CT, sequence 2 be TC:

$$
\begin{aligned}
d[1,1] & =d[2,2] \Rightarrow \text { regimen } \mathrm{C} \\
d[1,2] & =d[2,1] \Rightarrow \text { regimen } \mathrm{T}
\end{aligned}
$$

Effect and Variance Estimates from Crossover Trial

- Treatment Difference: $\tau_{d}=\tau_{T}-\tau_{C}$
- estimated by: $\hat{\tau}_{d}=\frac{1}{2}\left(\bar{y}_{12 .}-\bar{y}_{11 .}+\bar{y}_{21 .}-\bar{y}_{22 .}\right) \quad \sim N\left(\tau_{d}, 2 \sigma_{e}^{2} / N\right)$
- Within-subject variance: σ_{e}^{2}
estimated by: $s^{2}=\sum_{i=1}^{2} \sum_{k=1}^{N / 2}\left(\left(d_{i k}-\bar{d}_{i .}\right)^{2} /(N-2)\right)$
where

$$
\begin{aligned}
& \bar{y}_{i j}=\sum_{k=1}^{N / 2} y_{i j k} /(N / 2) \\
& d_{i k}=y_{i 2 k}-y_{i 1 k} \\
& \bar{d}_{i .}=\sum_{k=1}^{N / 2} d_{i k} /(N / 2)
\end{aligned}
$$

Bioequivalence Hypotheses

The null hypothesis of "Not bioequivalent" is expressed as:

$$
H_{0}^{-}: \tau_{d} \leq L \quad \text { or } \quad H_{0}^{+}: \tau_{d} \geq U
$$

The alternative hypothesis of "Bioequivalent" is expressed as:

$$
H_{a}^{-}: \tau_{d}>L \quad \text { and } \quad H_{a}^{+}: \tau_{d}<U
$$

L and U define the bioequivalence criteria. For this talk, it $L=-U$ (symmetric BE criteria).

Type I and II Error Probabilities

- Type I error probabilities:

$$
\begin{aligned}
& \alpha^{-}=\operatorname{Prob}\left[\text { Claim BE } \mid \tau_{d}=\mathrm{L}\right] \\
& \alpha^{+}=\operatorname{Prob}\left[\text { Claim BE } \mid \tau_{d}=\mathrm{U}\right] \\
& \quad \alpha=\alpha^{-}=\alpha^{+}, \text {when } L=-U
\end{aligned}
$$

- Type II error probabilities:

$$
\beta=1-\operatorname{Prob}\left[\operatorname{Claim~} \operatorname{BE} \mid \tau_{d}=0\right]
$$

Claim BE when both H_{0}^{-}and H_{0}^{+}are rejected. Or when the $100(1-2 \alpha) \%$ confidence intervals $\in(U, L)$

Claiming BE

Motivation for Research

- Sample size:

$$
N_{0}=\frac{2\left(\Phi^{-1}(1-\alpha)+\Phi^{-1}(1-\beta / 2)\right)^{2} \sigma_{0}^{2}}{\left(U-\left|\tau_{\mathbf{d} 0}\right|\right)^{2}}
$$

- Under estimates of the within-subject variance (e.g.; $\sigma_{0}^{2}<\sigma_{e}^{2}$) can result in an inconclusive study
- delay market access for drug product and/or formulation
- Adaptive designs can help mitigate any uncertainty
- Sample size re-estimation
- Group sequential designs
- Group sequential design with sample size re-estimation

Two stage group sequential design

- Two-stage group sequential design with interim look after n_{1} subjects complete and final look after $N\left(=n_{1}+n_{2}\right)$ subjects complete
- At interim: 3 potential decisions (i) stop and claim BE, (ii) stop and do not claim BE and (iii) continue trial.
- Defined by rejection region criteria
* in terms of difference in formulations, $\hat{\tau}_{d}$
* in terms of test statistics, t^{-}and t^{+}

Two-stage sequential design defined in terms of difference in formulations, τ_{d}

Test Statistics: Interim

- At interim look will calculate (based on n_{1} subjects)

$$
t_{1}^{-}=\frac{\hat{\tau}_{d 1}-L}{s_{1} \sqrt{2 / n_{1}}} \quad \text { and } \quad t_{1}^{+}=\frac{U-\hat{\tau}_{d 1}}{s_{1} \sqrt{2 / n_{1}}}
$$

- mean difference in treatments, $\hat{\tau}_{d 1}$
- estimated within-subject variance, s_{1}^{2}
- test statistics, t_{1}^{-}and t_{1}^{+}
* follow a Student's T distribution, if $\tau_{d}=L$ or U, respectively

Test Statistics: Final Look

- At final look will calculate (based on $n_{1}+n_{2}$ subjects)

$$
t^{-}=\frac{\hat{\tau}_{d}-L}{s \sqrt{2 / N}} \quad \text { and } \quad t^{+}=\frac{U-\hat{\tau}_{d}}{s \sqrt{2 / N}}
$$

- mean difference in treatments, $\hat{\tau}_{d}$
- estimated within-subject variance, s^{2}
- test statistics, t^{-}and t^{+}
* do not follow a Student's T distribution, only calculate if study
"continues" following interim analysis
* t^{-}and t^{+}are dependent on t_{1}^{-}and t_{1}^{+},

Two-stage sequential design defined

 in terms of test statistics, t^{-}and t^{+}

Note: Both t^{-}and t^{+}must be in blue area to Claim BE. And either t^{-}and t^{+}can be in the red to not claim BE.

Dependence between interim and end analysis

- $\hat{\tau}_{d}$ is dependent on $\hat{\tau}_{d 1}$

$$
\left(n_{1} / N\right) \hat{\tau}_{d 1}+\left(n_{2} / N\right) \hat{\tau}_{d 2}=\hat{\tau}_{d}
$$

- s^{2} is dependent on s_{1}^{2}

$$
s^{2}=\frac{\left(n_{1}-2\right) s_{1}^{2}+\left(n_{2}-2\right) s_{2}^{2}+S S}{n_{1}+n_{2}-2}
$$

where

$$
S S=\frac{n_{1} n_{2}}{2 N}\left[\left(\bar{d}_{1 .}^{(1)}-\bar{d}_{1 .}^{(2)}\right)^{2}+\left(\bar{d}_{2 .}^{(1)}-\bar{d}_{2 .}^{(2)}\right)^{2}\right],
$$

where $d_{i}^{(1)}$ and $d_{i}^{(2)}$ are the average difference in formulations for the $\mathrm{i}^{\text {th }}$ sequence based on n_{1} and n_{2} subjects, respectively.

Type I and II Error Probabilities and Futility Probabilities for Two-Stage Sequential Design

Decision	$\tau_{d}=L$	$\tau_{d}=U$	$\tau_{d}=0$
Claim BE at interim *	α_{1}^{-}	α_{1}^{+}	ρ_{1}
Claim BE at end $* *$			
Claim BE	α_{2}^{-}	$\alpha_{2}^{-}=\alpha_{1}^{-}+\alpha_{2}^{-}$	$\alpha^{+}=\alpha_{1}^{+}+\alpha_{2}^{+}$

* study is also stopped at this point
** implies study continued following interim look
- All probabilities can be evaluated using the density functions of test statistics, $t_{1}^{-}, t_{1}^{+}, t^{-}$and t^{+}.
- Which are functions of the independent statistics, $\hat{\tau}_{d 1}, \hat{\tau}_{d}, s_{1}^{2}, s_{2}^{2}$ and the $d_{i}^{(j)}$,s

Defining the density functions of t_{1}^{-}

Density of t_{1}^{-}

- $\hat{\tau}_{d 1} \sim N\left(\tau_{d}, 2 \sigma_{e}^{2} / n_{1}\right)$
- Let $w_{1}=\left(n_{1}-2\right) s_{1}^{2} / \sigma_{e}^{2} \quad \sim \chi_{n_{1}-2}^{2}$
- Then $z_{1}^{-}=t_{1}^{-} \sqrt{w_{1} /\left(n_{1}-2\right)}$, which is distributed normally
- The density of t_{1}^{-}can be expressed as the joint density of z_{1}^{-}and w_{1} :
- product of normal and a chi-square density function

Defining the density functions of t^{-}

Density of t^{-}

- Let $w=(N-2) s^{2} / \sigma_{e}^{2}=w_{1}+w_{2}^{*} \quad \sim \chi_{N-2}^{2}$
- $w_{2}^{*}=\left(n_{2}\right)\left(s_{2}^{*}\right)^{2} / \sigma_{e}^{2} \quad \sim \chi_{n_{2}}^{2}$

$$
-\left(s_{2}^{*}\right)^{2}=\left(n_{2}-2\right) s_{2}^{2}+S S
$$

- Let $z_{2}^{-}=t^{-} \sqrt{\left(w_{1}+w_{2}^{*}\right) /(N-2)}-\sqrt{N / n_{1}} z_{1}^{-}$, which is distributed normally
- which is a function of $\hat{\tau}_{d 2}$ and $\left(s_{2}^{*}\right)^{2}$
- The density of t^{-}can be expressed as the joint density of $z_{1}^{-}, w_{1}, z_{2}^{-}$ and w_{2}^{*} :
- product of 2 normal and 2 chi-square density functions
- an improper density

Calculating Error Probabilities

Let,
$\pi_{1}(\Delta)=\operatorname{Prob}\left[\right.$ Claim BE at interim $\left.\mid \tau_{d}=\Delta\right]$
$\pi_{2}(\Delta)=\operatorname{Prob}\left[\right.$ Continue at interim and Claim BE at end $\left.\mid \tau_{d}=\Delta\right]$
The probabilities can be defined in terms of π_{1} and π_{2} as follows:

$$
\begin{gathered}
\alpha^{-}=\alpha_{1}^{-}+\alpha_{2}^{-}=\pi_{1}(L)+\pi_{2}(L) \\
\alpha^{+}=\alpha_{1}^{+}+\alpha_{2}^{+}=\pi_{1}(U)+\pi_{2}(U) \\
\beta=1-\rho=1-\rho_{1}-\rho_{2}=1-\pi_{1}(0)-\pi_{2}(0)
\end{gathered}
$$

$\pi_{1}(\Delta)$ and $\pi_{2}(\Delta)$ can be evaluated by integrating over the densities t_{1}^{-} and t^{-}, respectively.

The futility probabilities, α_{0}^{-}and α_{0}^{+}, will be defined later in the talk.

Defining integration limits

$$
\begin{aligned}
d d_{1} & =2 U /\left(s_{1} \sqrt{2 / n_{1}}\right)-u u 1 \\
c c_{1} & =2 U /\left(s_{1} \sqrt{2 / n_{1}}\right)-l l 1 \\
d d_{2} & =2 U /(s \sqrt{2 / N})-u u_{2}
\end{aligned}
$$

Defining integration limits (continued)

Decision	only t^{-}
Claim BE at interim	$t_{1}^{-} \in\left(u u_{1}, d d_{1}\right)$
Do not Claim BE at interim	$t_{1}^{-}<l l_{1}$ or $t_{1}^{-}>c c_{1}$
Continue	$t_{1}^{-} \in\left(l l_{1}, u u_{1}\right)$ or
	$t_{1}^{-} \in\left(d d_{1}, c c_{1}\right)$
Claim BE at end	$t^{-} \in\left(u u_{2}, d d_{2}\right)$
Do not Claim BE at	$t^{-} \leq u u_{2}$ or $t^{-} c c_{2}$

Note: $u u_{1}$ is less than $d d_{1}$ when $w_{1}<\theta^{2}\left(n_{1} / 2\right)\left(n_{1}-2\right) / u u_{1}^{2}$.
And $u u_{2}$ is less than $d d_{2}$ when w_{2}^{*} is less than $\theta^{2}(N / 2)\left(N_{1}-2\right) / u u_{2}^{2}$.

Defining $\pi_{1}(\Delta)$ and $\pi_{2}(\Delta)$

$\pi_{1}(\Delta)=\int_{0}^{b b_{1}} \int_{d_{1}}^{c c_{1}} \phi\left(y_{1}^{-}\right) \psi_{n_{1}-2}\left(w_{1}\right) d y_{1}^{-} d w_{1}$
$\pi_{2}(\Delta)=$
$\int_{0}^{b b_{1}} \int_{c_{1}}^{d_{1}} \int_{0}^{b b_{2}} \int_{c_{2}}^{d_{2}} \phi\left(y_{1}^{-}\right) \psi_{n_{1}-2}\left(w_{1}\right) \phi\left(y_{2}^{-}\right) \psi_{n_{2}}\left(w_{2}^{*}\right) d y_{2}^{-} d w_{2}^{*} d y_{1}^{-} d w_{1}$
$+\int_{0}^{b b_{1}} \int_{c c_{1}}^{d d_{1}} \int_{0}^{b b_{2}} \int_{c_{2}}^{d_{2}} \phi\left(y_{1}^{-}\right) \psi_{n_{1}-2}\left(w_{1}\right) \phi\left(y_{2}^{-}\right) \psi_{n_{2}}\left(w_{2}^{*}\right) d y_{2}^{-} d w_{2}^{*} d y_{1}^{-} d w_{1}$
$+\int_{b b_{1}}^{\infty} \int_{c_{1}}^{d d_{1}} \int_{0}^{b b_{2}} \int_{c_{2}}^{d_{2}} \phi\left(y_{1}^{-}\right) \psi_{n_{1}-2}\left(w_{1}\right) \phi\left(y_{2}^{-}\right) \psi_{n_{2}}\left(w_{2}^{*}\right) d y_{2}^{-} d w_{2}^{*} d y_{1}^{-} d w_{1}$.

Integration limits for $\pi_{1}(\Delta)$ and $\pi_{2}(\Delta)$

$$
\begin{aligned}
b b_{1} & =\theta^{2}\left(n_{1} / 2\right)\left(n_{1}-2\right) / u u_{1}^{2} \\
c_{1} & =l l_{1} \sqrt{w_{1} /\left(n_{1}-2\right)}-(\boldsymbol{\Delta}-\mathbf{L}) /\left(\sigma_{\mathrm{e}} \sqrt{2 / \mathbf{n}_{1}}\right) \quad \Delta / \sigma_{\mathrm{e}}=\left(\boldsymbol{\Delta} / \sigma_{0}\right)\left(\sigma_{0} / \sigma_{\mathrm{e}}\right) \\
d_{1} & =u u_{1} \sqrt{w_{1} /\left(n_{1}-2\right)}-(\Delta-L) /\left(\sigma_{e} \sqrt{2 / n_{1}}\right) \\
c c_{1} & =\frac{2 U}{\sigma_{e} \sqrt{2 / n_{1}}}-u u_{1} \sqrt{w_{1} /\left(n_{1}-2\right)}-(\Delta-L) /\left(\sigma_{e} \sqrt{2 / n_{1}}\right) \\
d d_{1} & =\frac{2 U}{\sigma_{e} \sqrt{2 / n_{1}}}-l l_{1} \sqrt{w_{1} /\left(n_{1}-2\right)}-(\Delta-L) /\left(\sigma_{e} \sqrt{2 / n_{1}}\right) \\
b b_{2} & =\theta^{2}(N / 2)\left(N_{1}-2\right) / u u_{2}^{2} \\
c_{2} & =\frac{u u_{2} \sqrt{\left(w_{1}+w_{2}^{*}\right) /(N-2)}-y_{1}^{-} \sqrt{n_{1} / N}-(\Delta-L) /\left(\sigma_{e} \sqrt{2 / N}\right)}{\sqrt{n_{2} / N}} \\
d_{2} & =\frac{2 U /\left(\sigma_{e} \sqrt{2 / N}\right)-u u_{2} \sqrt{\left(w_{1}+w_{2}^{*}\right) /(N-2)}-y_{1}^{-} \sqrt{n_{1} / N}-(\Delta-L) /\left(\sigma_{e} \sqrt{2 / N}\right)}{\sqrt{n_{2} / N}}
\end{aligned}
$$

Futility Probabilities

The futility probability is the probability of do not claim BE at the interim, which occurs when $t_{1}^{-}<l l_{1}$ and $t_{1}^{-} \geq 2 U /\left(s_{1} \sqrt{2 / n_{2}}\right)-l l_{1}$.

$$
\begin{aligned}
\alpha_{0}^{-}= & \operatorname{Prob}\left[\text { Do not claim BE at interim } \mid \tau_{d}=L\right] \\
= & 1-\int_{0}^{\infty} \int_{c_{1}}^{\infty} \phi\left(y_{1}^{-}\right) \psi_{n_{1}-2}\left(w_{1}\right) d y_{1}^{-} d w_{1} \\
& +\int_{0}^{\infty} \int_{d d_{1}}^{\infty} \phi\left(y_{1}^{-}\right) \psi_{n_{1}-2}\left(w_{1}\right) d y_{1}^{-} d w_{1}
\end{aligned}
$$

where $c 1$ and $d d 1$ are defined above, with $\Delta=L$.

Generating a design

- Set α and β
- Provide σ_{0}^{2} and $\tau_{d 0}$
- Set equivalence criteria, L and U
- Further constraints are needed
- When interim look will occur, defined in terms of ratio of n_{1} / N
- How much of α to be spend at the interim look, α_{1}
- Futility criteria, defined in terms of α_{0}.
- Using $\pi_{1}(\Delta)$ and $\pi_{2}(\Delta)$ can solve for rejection region parameters, $l l_{1}$, $u u_{1}$ and $u u_{2}$ for any choice of constraints

Example Designs

Let

- $\alpha=0.05$ and $\beta=0.10$
- σ_{0} be values such that $\theta_{0}=\left(U / \sigma_{0}\right)=0.2628,0.5343$ and 0.9254
- $\tau_{d}=0, U=-L=0.2231, n_{1} / N=0.5$
- $\alpha_{1}=0.008821$ and $\alpha_{0}=0$ (No stopping for futility)

θ_{0}	$\mathrm{~N}(\mathrm{R})$	n_{1}	$l l_{1}$	$u u_{1}$	$u u_{2}$
0.2628	$321.39(1.03)$	160.69	-4.3964	2.1963	1.6960
0.5343	$78.99(1.04)$	39.50	-4.8579	2.2876	1.7108
0.9254	$27.44(1.09)$	13.72	-6.5718	2.5918	1.7547

NOTE: R is the ratio of maximum sample size for the sequential design and the sample size for a fixed design.

More example Designs

Now consider the following changes:

- $n_{1} / N=0.75($ design 2$)$
- $\alpha_{1}=0.0303964$ (design 3)
- $\alpha_{0}=0.25($ design 4$)$
- all three changes (design 5)

For $\theta_{0}=0.9254$, new designs are:

Design	θ_{0}	$\mathrm{~N}(\mathrm{R})$	n_{1}	$l l_{1}$	$u u_{1}$	$u u_{2}$
1	0.9254	$27.44(1.09)$	13.72	-6.5718	2.5918	1.7547
2	0.9254	$27.19(1.08)$	20.39	-5.6327	2.5816	1.7150
3	0.9254	$30.19(1.19)$	15.09	-6.3268	2.0247	1.9678
4	0.9254	$27.44(1.09)$	13.72	-0.6949	2.5918	1.7525
5	0.9254	$28.23(1.12)$	21.17	-0.6885	1.9911	1.8404

Summary of Exact Methods

- the Exact Method is specific to:
- bioequivalence hypothesis
- two stage sequential design
- the exact Method provides:
- exact Type I and II error probabilities
- means to evaluate any 2 stage sequential design
- Is generalizable to
- more than one interim look
* computationally exhaustive
- superiority hypotheses

Question: What methods for designing a two stage sequential design for BE already exist?

Other group sequential designs

- Many designs in the literature
- All are based on similar principles (dependence of the later looks on earlier looks)
- Differences
- Assume variance is known
- Hypothesis is one or two sided superiority $\left(H_{0}: \tau_{d}=0\right)$
- There are approximations to account for these.
- Another alternative: Combining p-values of adaptive designs

Question: How do these compare to the exact method?

Approximations from Jennison and Turnbull[2]:

- Assumption of known variance
- Transformation of rejection region parameters (l_{1}, u_{1} and u_{2}) using the quantiles of the t-distribution $\left(t_{\nu, p}\right)$:
$-l l_{1}=t_{n_{1}-2,1-\Phi\left(l_{1}\right)}, \quad u u_{1}=t_{n_{1}-2,1-\Phi\left(u_{1}\right)} \quad$ and $u u_{2}=t_{N-2,1-\Phi\left(u_{2}\right)}$
- Bioequivalence: design as a superiority trial
- Equate: Claim different (superiority) to Do not claim BE and viceversa
α : is desired Type II probability of the bioequivalence trial β : is desired Type I probability of the bioequivalence trial
- Transformation of the rejection region parameters, $\left(b_{1}, a_{1}\right.$ and $\left.b_{2}\right)$

$$
\begin{gathered}
l_{1}=-b_{1}+U /\left(\sigma_{e} \sqrt{2 / n_{1}}\right) \quad u_{1}=-a_{1}+U /\left(\sigma_{e} \sqrt{2 / n_{1}}\right) \\
u_{2}=-b_{2}+U /\left(\sigma_{e} \sqrt{2 / N}\right)
\end{gathered}
$$

p-Value designs[3-8]

- Proposed in the context of adaptive designs
- Based on: Independence of cohorts and thus, their corresponding pvalues
- p-values $\sim U[0,1]$, with z-score $\left(z_{i}=\Phi^{-1}\left(1-p_{i}\right)\right)$ are $\sim N[0,1]$ (under null hypothesis)
- The combination of the p-values, $C\left(p_{1}, p_{2}\right)$ is also $N[0,1]$:

$$
C\left(p_{1}, p_{2}\right)=1-\Phi\left[w_{1} \Phi^{-1}\left(1-p_{1}\right)+w_{2} \Phi^{-1}\left(1-p_{2}\right)\right] .
$$

- Compare p_{1} verse α_{1} and α_{0} and $C\left(p_{1}, p_{2}\right)$ verse c
- For BE, p-values for both Hypotheses $\left(H_{0}^{-}\right.$and $\left.H_{0}^{+}\right)$are needed
- Power and sample sizes are approximate
- z-scores are not distribute $N[0,1]$ under the alternative.

Comparison of designs

- Under the assumption of variance known, $n_{1}=n_{2}$ and $w_{i}=\sqrt{\left(n_{i} / N\right)}$, all three designs are identical
- However, they differ under assumption of the variance being unknown
- For combination p-value designs:
+ error probabilities are exact under the null
- not all the information is used if trial continues to the end
- For approximations
+ uses all the information
- the dependence of between looks is partially ignored
- The exact method has both advantages!!

Question: How do they compare in terms of controlling α and β ?

Comparison of designs: Design parameters

Parameter	Exact Design	Approx. Design	p-value Design**
N	27.44	26	25.78
n_{1}	13.72	14	12.89
$l l_{1}$ or a_{0}	-6.5718	-6.7663	1.0
$u u_{1}$ or a_{1}	2.5918	2.4722	0.00882
$u u_{2}$ or c	1.7547	1.7625	0.04536

* Sample sizes rounded to nearest even integer, prior to transformation of rejection region. Superiority design generated using exact methods
** Rejection region parameters defined in terms of p-values (a_{0}, a_{1} and c)

Comparison of designs: Type I error probabilities

* Exact methods used to calculate probability
** Monte Carlo/Importance sampling (1000 reps) used to calculate probability

Comparison of designs: Type II error probabilities

* Exact methods used to calculate probability
** Monte Carlo/Importance sampling (1000 reps) used to calculate probability

Other Work

- Sample size re-estimation
- Similar methods can be used
- Summation of integrals, each one corresponding to re-estimated value of n_{2}
- Two stage sequential designs with sample size re-estimation Fixed Sequential Design only re-estimate n_{2} Partially fixed sequential design re-estimate n_{2} and $u u_{2}$ Fully flexible sequential design re-estimate $n_{2}, u u_{1}, l l_{1}$ and $u u_{2}$

Summary

- The exact Method provides:
- ability to design trials with exact Type I and II error probabilities
- great flexibility in design constraints
- a means to evaluate the properties of any 2 stage sequential design
- Is superior to other designs which either do not provide exact probabilities or do not utilize all information gathered in the trial
- The exact method is generalizable to
- other hypotheses (e.g.; superiority)
- more than one interim look
* although computationally exhaustive

References

[1] Kiesar, M. and Friede, T. (2000) Re-calculating the sample size in internal pilot study designs with control of the type I error rate. Statistics in Medicine. 19: 901-911
[2] Jennison, C. and Turnbull, B.W. (2000) Group Sequential Methods with Application to Clinical Trials. Chapman and Hall CRC.
[3] Bauer, P. and Köhne K. (1994) Evaluation of Experiments with Adaptive Interim Analyses. Biometrics 50:1029-1041
[4] Bauer, P., Brannath, W. and Posch, M. (2001) Flexible two-stage designs. Methods of Information in Medicine 40: 117-121
[5] Brannath, W., Posch, M. and Bauer, P. (2002) Recursive Combination Tests. Journal of the American Statistical Association. 97: 236-244
[6] Posch, M., Bauer, P. and Brannath, W. (2003) Issues in Designing Flexible Trials. Statistics in Medicine 22: 953-969
[7] Lehmacher W. and Wassmer, G. (1999) Adaptive Sample Size Calculations in Group Sequential Trials. Biometrics 55 :1286-1290
[8] Wassmer, G., Eisebitt, R. and Coburger, S. (2001) Flexible interim analyses of clinical trials using multistage adaptive test designs. Drug Information Journal 35: 1131-1146
[9] Siegmund, D. (1975) Importance Sampling in the Monte Carlo Study of Sequential Tests. The Annuls of Statistics 4: 673-684
[10] Fishman, G.A. (1996) Monte Carlo: Concepts, Algorithms and Applications. Springer
[11] Rubinstein, R.Y. (1981) Simulations and the Monte Carlo Method. Wiley and Sons

