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Objective

• To share an exact method for design and evaluation of two stage se-
quential designs for bioequivalence hypothesis

• To discuss how this method compares to existing designs
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Outline

• Introduction to Bioequivalence Trials

•Motivation

• Two-Stage Sequential Design

• Exact Methods

• Comparisons to Current Methodologies

• Other Work

• Summary
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Bioequivalence trials

• Clinical study to compare a new formulation and current formulation
of drug product

• Objective is to demonstrate bioequivalence (BE) of pharmacokinetic
(PK) profile

– PK - drug concentration in the blood

– surrogate for efficacy and safety

– PK measures: AUC and Cmax

• Conducted to gain market access for new formulation
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Figure of PK profile and measures
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Crossover Designs and Model

• Study Design: A randomized, open-label, period-balanced, two pe-
riod crossover design. Formulatoins: C: current and T: test

•Model: yijk = µ + πj + τd[i,j] + sik + eijk

for the kth subject in the jth period of the ith sequence

between-subject: sik ∼ N(0, σ2
b)

within-subject: eijk ∼ N(0, σ2
e)

– sequence 1 be CT, sequence 2 be TC:

d[1, 1] = d[2, 2] ⇒ regimen C

d[1, 2] = d[2, 1] ⇒ regimen T
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Effect and Variance Estimates from Crossover Trial

• Treatment Difference: τd = τT − τC

• estimated by: τ̂d = 1
2(ȳ12. − ȳ11. + ȳ21. − ȳ22.) ∼ N(τd, 2σ

2
e/N)

•Within-subject variance: σ2
e

estimated by: s2 =
∑2

i=1

∑N/2
k=1((dik − d̄i.)

2/(N − 2))

where

ȳij· =
∑N/2

k=1 yijk/(N/2)

dik = yi2k − yi1k

d̄i. =
∑N/2

k=1 dik/(N/2)
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Bioequivalence Hypotheses

The null hypothesis of ”Not bioequivalent” is expressed as:

H−
0 : τd ≤ L or H+

0 : τd ≥ U

L 0 U

The alternative hypothesis of ”Bioequivalent” is expressed as:

H−
a : τd > L and H+

a : τd < U

L 0 U

L and U define the bioequivalence criteria. For this talk, it L = −U
(symmetric BE criteria).
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Type I and II Error Probabilities

• Type I error probabilities:

α− = Prob[Claim BE| τd = L]

α+ = Prob[Claim BE| τd = U]

α = α− = α+, when L = −U

• Type II error probabilities:

β = 1− Prob[Claim BE|τd = 0]

Claim BE when both H−
0 and H+

0 are rejected.
Or when the 100(1− 2α)% confidence intervals ∈ (U,L)
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Claiming BE

Effect

  

L U

(1)

(2)

(3)

(4)

Do not Do not
Claim BE Claim BE Claim BE
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Motivation for Research

• Sample size:

N0 =
2 (Φ−1(1− α) + Φ−1(1− β/2))2 σ2

0

(U − |τd0|)2
• Under estimates of the within-subject variance (e.g.; σ2

0 < σ2
e) can

result in an inconclusive study

– delay market access for drug product and/or formulation

•Adaptive designs can help mitigate any uncertainty

– Sample size re-estimation

– Group sequential designs

– Group sequential design with sample size re-estimation
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Two stage group sequential design

• Two-stage group sequential design with interim look after n1 subjects
complete and final look after N (= n1 + n2) subjects complete

• At interim: 3 potential decisions (i) stop and claim BE, (ii) stop and
do not claim BE and (iii) continue trial.

– Defined by rejection region criteria

∗ in terms of difference in formulations, τ̂d
∗ in terms of test statistics, t− and t+
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Two-stage sequential design defined
in terms of difference in formulations, τd
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Test Statistics: Interim

• At interim look will calculate (based on n1 subjects)

t−1 =
τ̂d1−L

s1

√
2/n1

and t+1 =
U−τ̂d1

s1

√
2/n1

– mean difference in treatments, τ̂d1

– estimated within-subject variance, s2
1

– test statistics, t−1 and t+1
∗ follow a Student’s T distribution, if τd = L or U , respectively
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Test Statistics: Final Look

• At final look will calculate (based on n1 + n2 subjects)

t− =
τ̂d−L

s
√

2/N
and t+ =

U−τ̂d
s
√

2/N

– mean difference in treatments, τ̂d
– estimated within-subject variance, s2

– test statistics, t− and t+

∗ do not follow a Student’s T distribution, only calculate if study
”continues” following interim analysis

∗ t− and t+ are dependent on t−1 and t+1 ,
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Two-stage sequential design defined
in terms of test statistics, t− and t+
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Dependence between interim and end analysis

• τ̂d is dependent on τ̂d1 (n1/N)τ̂d1 + (n2/N)τ̂d2 = τ̂d

• s2 is dependent on s2
1 s2 =

(n1−2)s2
1+(n2−2)s2

2+SS
n1+n2−2

where SS = n1n2
2N [(d̄

(1)
1· − d̄

(2)
1· )2 + (d̄

(1)
2· − d̄

(2)
2· )2],

where d
(1)
i and d

(2)
i are the average difference in formulations for the ith

sequence based on n1 and n2 subjects, respectively.
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Type I and II Error Probabilities and Futility Probabilities
for Two-Stage Sequential Design

Decision τd = L τd = U τd = 0

Claim BE at interim * α−1 α+
1 ρ1

Claim BE at end ** α−2 α+
2 ρ2

Claim BE α− = α−1 + α−2 α+ = α+
1 + α+

2 ρ = ρ1 + ρ2

Do not claim BE α−0 α+
0

at interim *
* study is also stopped at this point
** implies study continued following interim look

• All probabilities can be evaluated using the density functions of test
statistics, t−1 , t+1 , t− and t+.

•Which are functions of the independent statistics, τ̂d1, τ̂d, s2
1, s2

2 and

the d
(j)
i ’s
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Defining the density functions of t−1

Density of t−1

• τ̂d1 ∼ N(τd, 2σ2
e/n1)

• Let w1 = (n1 − 2)s2
1/σ

2
e ∼ χ2

n1−2

• Then z−1 = t−1
√

w1/(n1 − 2), which is distributed normally

• The density of t−1 can be expressed as the joint density of z−1 and w1:

– product of normal and a chi-square density function
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Defining the density functions of t−

Density of t−

• Let w = (N − 2)s2/σ2
e = w1 + w∗2 ∼ χ2

N−2

• w∗2 = (n2)(s
∗
2)

2/σ2
e ∼ χ2

n2

– (s∗2)2 = (n2 − 2)s2
2 + SS

• Let z−2 = t−
√

(w1 + w∗2)/(N − 2)−
√

N/n1z
−
1 , which is distributed

normally

– which is a function of τ̂d2 and (s∗2)2

• The density of t− can be expressed as the joint density of z−1 , w1, z−2
and w∗2 :

– product of 2 normal and 2 chi-square density functions

– an improper density



21

Calculating Error Probabilities

Let,

π1(∆) = Prob[Claim BE at interim | τd = ∆]

π2(∆) = Prob[Continue at interim and Claim BE at end | τd = ∆]

The probabilities can be defined in terms of π1 and π2 as follows:

α− = α−1 + α−2 = π1(L) + π2(L)

α+ = α+
1 + α+

2 = π1(U) + π2(U)

β = 1− ρ = 1− ρ1 − ρ2 = 1− π1(0)− π2(0)

π1(∆) and π2(∆) can be evaluated by integrating over the densities t−1
and t−, respectively.

The futility probabilities, α−0 and α+
0 , will be defined later in the talk.
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Defining integration limits
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√
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√
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√
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Defining integration limits (continued)

Decision only t−
Claim BE at interim t−1 ∈ (uu1, dd1)

Do not Claim BE at interim t−1 < ll1 or t−1 > cc1

Continue t−1 ∈ (ll1, uu1) or

t−1 ∈ (dd1, cc1)

Claim BE at end t− ∈ (uu2, dd2)
Do not Claim BE at t− ≤ uu2 or t−cc2

Note: uu1 is less than dd1 when w1 < θ2(n1/2)(n1 − 2)/uu2
1.

And uu2 is less than dd2 when w∗2 is less than θ2(N/2)(N1 − 2)/uu2
2.



24

Defining π1(∆) and π2(∆)

π1(∆) =

∫ bb1

0

∫ cc1

d1

φ(y−1 )ψn1−2(w1) dy−1 dw1

π2(∆) =∫ bb1

0

∫ d1

c1

∫ bb2

0

∫ d2

c2

φ(y−1 )ψn1−2(w1)φ(y−2 )ψn2(w
∗
2) dy−2 dw∗2dy−1 dw1

+

∫ bb1

0

∫ dd1

cc1

∫ bb2

0

∫ d2

c2

φ(y−1 )ψn1−2(w1)φ(y−2 )ψn2(w
∗
2) dy−2 dw∗2dy−1 dw1

+

∫ ∞

bb1

∫ dd1

c1

∫ bb2

0

∫ d2

c2

φ(y−1 )ψn1−2(w1)φ(y−2 )ψn2(w
∗
2) dy−2 dw∗2dy−1 dw1.
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Integration limits for π1(∆) and π2(∆)

bb1 = θ2(n1/2)(n1 − 2)/uu2
1

c1 = ll1
√

w1/(n1 − 2)− (∆− L)/(σe

√
2/n1) ∆/σe = (∆/σ0)(σ0/σe)

d1 = uu1

√
w1/(n1 − 2)− (∆− L)/(σe

√
2/n1)

cc1 =
2U

σe

√
2/n1

− uu1

√
w1/(n1 − 2)− (∆− L)/(σe

√
2/n1)

dd1 =
2U

σe

√
2/n1

− ll1
√

w1/(n1 − 2)− (∆− L)/(σe

√
2/n1)

bb2 = θ2(N/2)(N1 − 2)/uu2
2

c2 =
uu2

√
(w1 + w∗

2)/(N − 2)− y−1
√

n1/N − (∆− L)/(σe

√
2/N)√

n2/N

d2 =
2U/(σe

√
2/N)− uu2

√
(w1 + w∗

2)/(N − 2)− y−1
√

n1/N − (∆− L)/(σe

√
2/N)√

n2/N
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Futility Probabilities

The futility probability is the probability of do not claim BE at the
interim, which occurs when t−1 < ll1 and t−1 ≥ 2U/(s1

√
2/n2)− ll1.

α−0 = Prob[Do not claim BE at interim | τd = L]

= 1−
∫ ∞

0

∫ ∞

c1

φ(y−1 )ψn1−2(w1) dy−1 dw1

+

∫ ∞

0

∫ ∞

dd1

φ(y−1 )ψn1−2(w1) dy−1 dw1

where c1 and dd1 are defined above, with ∆ = L.
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Generating a design

• Set α and β

• Provide σ2
0 and τd0

• Set equivalence criteria, L and U

• Further constraints are needed

– When interim look will occur, defined in terms of ratio of n1/N

– How much of α to be spend at the interim look, α1

– Futility criteria, defined in terms of α0.

• Using π1(∆) and π2(∆) can solve for rejection region parameters, ll1,
uu1 and uu2 for any choice of constraints



28

Example Designs

Let

• α = 0.05 and β = 0.10

• σ0 be values such that θ0 = (U/σ0) = 0.2628, 0.5343 and 0.9254

• τd = 0, U = −L = 0.2231, n1/N = 0.5

• α1 = 0.008821 and α0 = 0 (No stopping for futility)

θ0 N (R) n1 ll1 uu1 uu2
0.2628 321.39 (1.03) 160.69 -4.3964 2.1963 1.6960
0.5343 78.99 (1.04) 39.50 -4.8579 2.2876 1.7108
0.9254 27.44 (1.09) 13.72 -6.5718 2.5918 1.7547

NOTE: R is the ratio of maximum sample size for the sequential design
and the sample size for a fixed design.
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More example Designs

Now consider the following changes:

• n1/N = 0.75 (design 2)

• α1 = 0.0303964 (design 3)

• α0 = 0.25 (design 4)

• all three changes (design 5)

For θ0 = 0.9254, new designs are:

Design θ0 N (R) n1 ll1 uu1 uu2
1 0.9254 27.44 (1.09) 13.72 -6.5718 2.5918 1.7547
2 0.9254 27.19 (1.08) 20.39 -5.6327 2.5816 1.7150
3 0.9254 30.19 (1.19) 15.09 -6.3268 2.0247 1.9678
4 0.9254 27.44 (1.09) 13.72 -0.6949 2.5918 1.7525
5 0.9254 28.23 (1.12) 21.17 -0.6885 1.9911 1.8404
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Summary of Exact Methods

• the Exact Method is specific to:

– bioequivalence hypothesis

– two stage sequential design

• the exact Method provides:

– exact Type I and II error probabilities

– means to evaluate any 2 stage sequential design

• Is generalizable to

– more than one interim look

∗ computationally exhaustive

– superiority hypotheses

Question: What methods for designing a two stage sequential design
for BE already exist?
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Other group sequential designs

•Many designs in the literature

– All are based on similar principles (dependence of the later looks on
earlier looks)

• Differences

– Assume variance is known

– Hypothesis is one or two sided superiority (H0 : τd = 0)

• There are approximations to account for these.

• Another alternative: Combining p-values of adaptive designs

Question: How do these compare to the exact method?
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Approximations from Jennison and Turnbull[2]:

• Assumption of known variance

– Transformation of rejection region parameters (l1, u1 and u2) using
the quantiles of the t-distribution (tν,p):

– ll1 = tn1−2,1−Φ(l1)
, uu1 = tn1−2,1−Φ(u1)

and uu2 = tN−2,1−Φ(u2)

• Bioequivalence: design as a superiority trial

– Equate: Claim different (superiority) to Do not claim BE and vice-
versa

α: is desired Type II probability of the bioequivalence trial

β: is desired Type I probability of the bioequivalence trial

– Transformation of the rejection region parameters, (b1, a1 and b2)

l1 = −b1 + U/(σe
√

2/n1) u1 = −a1 + U/(σe
√

2/n1)

u2 = −b2 + U/(σe
√

2/N)
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p-Value designs[3-8]

• Proposed in the context of adaptive designs

• Based on: Independence of cohorts and thus, their corresponding p-
values

• p-values ∼ U [0, 1], with z-score (zi = Φ−1(1 − pi)) are ∼ N [0, 1]
(under null hypothesis)

• The combination of the p-values, C(p1, p2) is also N [0, 1]:

C(p1, p2) = 1− Φ[w1Φ
−1(1− p1) + w2Φ

−1(1− p2)].

• Compare p1 verse α1 and α0 and C(p1, p2) verse c

• For BE, p-values for both Hypotheses (H−
0 and H+

0 )are needed

• Power and sample sizes are approximate

– z-scores are not distribute N [0, 1] under the alternative.
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Comparison of designs

• Under the assumption of variance known, n1 = n2 and wi =
√

(ni/N),
all three designs are identical

• However, they differ under assumption of the variance being unknown

• For combination p-value designs:

+ error probabilities are exact under the null

- not all the information is used if trial continues to the end

• For approximations

+ uses all the information

- the dependence of between looks is partially ignored

• The exact method has both advantages!!

Question: How do they compare in terms of controlling α and β?
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Comparison of designs: Design parameters

Parameter Exact Design Approx. Design∗ p-value Design∗∗
N 27.44 26 25.78
n1 13.72 14 12.89
ll1 or a0 -6.5718 -6.7663 1.0
uu1 or a1 2.5918 2.4722 0.00882
uu2 or c 1.7547 1.7625 0.04536

∗ Sample sizes rounded to nearest even integer, prior to transformation of rejection
region. Superiority design generated using exact methods
∗∗ Rejection region parameters defined in terms of p-values (a0, a1 and c)
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Comparison of designs: Type I error probabilities
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Comparison of designs: Type II error probabilities
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Other Work

• Sample size re-estimation

– Similar methods can be used

– Summation of integrals, each one corresponding to re-estimated
value of n2

• Two stage sequential designs with sample size re-estimation

Fixed Sequential Design only re-estimate n2

Partially fixed sequential design re-estimate n2 and uu2

Fully flexible sequential design re-estimate n2, uu1, ll1 and uu2
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Summary

• The exact Method provides:

– ability to design trials with exact Type I and II error probabilities

– great flexibility in design constraints

– a means to evaluate the properties of any 2 stage sequential design

• Is superior to other designs which either do not provide exact proba-
bilities or do not utilize all information gathered in the trial

• The exact method is generalizable to

– other hypotheses (e.g.; superiority)

– more than one interim look

∗ although computationally exhaustive
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